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1. Introduction 

Quantum molecular simulations have progressed along different, competing and 
complementing, lines of development. From the focus on total energies and 
molecular gradients, the development now directs towards molecular properties 
and spectra in general. Implementations of advanced propagator methods have 
been instrumental in the late efforts, and have found applications on a wide range 
of molecular phenomena. Jan Linderberg was one of the early originators of 
propagators in the context of quantum molecular science, and much of the ongoing 
work in this area has been inspired by his pioneering contributions and by the 
"yellow book" [1]. As we hope to indicate with the present contribution, propa- 
gator methods stood the test over the years and the challenge to theory and 
computations posed by the experimental progress, in this work represented by 
molecular electron spectroscopies, has been met. 

In the present work we intend to show the performance and possibilities of 
current propagator implementations with respect to calculations of molecular 
electronic spectra. This includes applications of both electron and polarization 
propagators, viz. Auger, double charge transfer, X-ray emission, X-ray absorption 
and photoelectron spectra in the first case, and one- and two-photon absorption 
and single-triplet excitation spectra in the second case. The characteristics of these 
applications are best displayed by choosing a common set of samples, and we 
choose here polyacetylene and the short polyenes, viz. ethylene, butadiene, hexa- 
triene and octatetraene, for this purpose. The polyenes are frequently used as test 
compounds for a variety of methods addressing properties of oligomers. They 

* Dedicated to Jan Linderberg on his 60th birthday 
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provide good test cases for the convergence behaviour of oligomeric properties, for 
size extensivity and role of long-range interactions for the electronic spectra, and 
for the applicability of building block models which relate spectroscopic features 
with local electronic structures. Systematic theoretical studies of the excited states 
of these molecules have been presented by state-specific methods such as multi- 
reference determinant configuration interaction methods [2-4], and by propaga- 
tor-oriented methods as reviewed here. The latter have, in addition to electronic 
spectra, also allowed simulations of various types of molecular properties. A devel- 
opment towards larger molecules has recently taken place for calculations of one- 
and two-photon spectra using direct atomic orbital techniques [5], which has 
enabled the application on larger molecules than otherwise would have been 
possible. Concerning methods for long polymer-like chains it may be mentioned 
that long finite alkane chains have also been treated on a correlated ab initio level 
by a modification of the matrix-block negative-factor-counting method [6]. How- 
ever, because of the comparably small amount of applications of these methods yet 
available, we restrict the present review to the short polyenes on the one hand, and 
to the extended systems with periodic boundary conditions, here polyacetylene, on 
the other. 

2. General theory 

2.1 Propagator methods' for systems of different size 

Propagator or Green's function methods are traditionally used in quantum chem- 
istry when a direct approach to transition energies and moments of spectra is 
sought. When propagators methods were introduced in quantum chemistry in the 
1960s, the first efforts of actual calculations were concentrated mainly on the 
particle-hole propagator and the related polarization propagator. Initially used in 
connection with semiempirical approaches, e.g. for alternant hydrocarbons [7, 8], 
the particle-hole propagator for molecules was soon implemented by ab initio 
methods at different levels of approximation. During the time of semiempirical 
calculations, the one-particle propagator seems to have served the somewhat 
indirect use of providing a renormalization of the particle-hole propagator [7, 8]. 
The one-particle propagator for finite electronic systems did, however, receive 
a renewed interest when its own perturbation expansion was employed in ab initio 
calculations of ionization potentials of atoms [9, 10] and molecules [11]. It was 
important in this development that breakdown effects in molecular photoelectron 
spectra were made accessible by means of one-particle Green's function calcu- 
lations [12]. It may be added that one-particle propagator calculations can also 
provide information on other than photoelectron spectra. We will exemplify this 
for X-ray emission and absorption spectra in Sections 3.3 and 3.4. Another 
propagator we are interested in is the particle-particle Green's function which has 
found quantum chemical applications in ab initio calculations of Auger and DCT 
(double charge transfer) spectra of molecules as will be outlined in Section 3.2. 
Polarization and particle-hole propagator calculations will be discussed in Section 
3.5. The above propagators (one-particle, particle-hole, particle-particle) have also 
been applied in ab initio calculations of several spectral properties of polymers, 
with similar methods as those in use for molecules. We intend a discussion of these 
various spectroscopies for finite and infinite polyenes under the unifying aspects of 
propagator theory. 
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In addition to providing a direct approach to many spectra, propagator 
methods also have other advantages. One point to be mentioned is that they allow 
for useful partial summation techniques which may be described as appropriate 
selection of classes of diagrams. For example, renormalization of the one-particle 
lines occurring in the two-particle propagator yields a connection of Auger and 
DCT spectra to photoelectron spectra. Another point important for our purpose is 
that the perturbation expansions of propagator theory ensure size-extensivity 
which makes a unified treatment of finite and infinite systems possible. The 
size-extensivity (or size-consistency) requirement of a method means that the 
quality of the results, in a given approximation, should not depend on the system 
size. This property, which is by construction guaranteed for Green's function 
methods [13-16], in contrast inter alia to configuration interaction methods [17], 
qualifies them as ideal tools for the purpose of investigating the oligomer to 
polymer transition for polyenes. Considering the computational effort when study- 
ing systems of increasing size, it may become important to have methods which can 
also describe a quasi-continuous manifold of states. Propagator methods for 
time-independent systems typically yield all the energy differences and transition 
moments for a spectrum in one single calculation. This may form a basis for 
developing methods which include correlation effects when calculating histograms 
of the density of quasi-particle states for very large polymer-like molecules [6]. 

Polyacetylene represents the infinite-size limiting case of polyenes. This case is 
computationally accessible by exploiting the translational symmetry of the peri- 
odic system. At the level of the Hartree-Fock approximation this is reflected in the 
crystal-orbital equations [18-20] which yield the electronic band structure of the 
polymer. Corrections of the Hartree-Fock results to account for electronic correla- 
tion at the ab initio level can provide quasi-particle shifts for some of the bands. For 
example, the fundamental band gap has been obtained in this way. The calculation 
of these shifts has been achieved by MNler-Plesset perturbation theory based on 
the Rayleigh-Schr~Sdinger expansion up to second order [21]. A third-order 
calculation of the quasi-particle shifts for polyacetylene has been performed [22] 
by means of the Dyson equation of Green's function theory. The spectral density of 
the one-particle Green's function for the whole valence region has been calculated 
with a second-order irreducible self-energy part and several correlation effects have 
been considered [23, 24]. Exciton binding energies of polyacetylene have also been 
calculated by propagator or propagator-related methods [25, 26, 22]. Applications 
of the one-particle Green's function to the calculation of X-ray spectra of polacety- 
lene and of the particle-particle propagator to the calculation of the Auger 
spectrum of polyacetylene will be discussed in Section 3. 

2.2 Definition of propagators for molecules and polymers 

A general double-time Green's function appropriate for the present purposes may 
be defined as follows [1, 27, 28]: 

= - i f  ~ <(A; B }}~, dt e~t< ~VoIr {A(t)/3(0) } 1 7"o ),  
- - o 0  

(1) 

where ~Uo is the correlated ground state of the neutral molecule, and T is Wick's 
time ordering operator. By i f  and/~ we denote the Heisenberg representation of the 
time dependence of the operators A and B induced by the adiabatic switching of 
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a part of the Hamiltonian. It is useful to consider special operators A and B of a given 
particle rank, namely one-particle operators, particle-hole, two-particle, three-particle 
operators, etc. We will collect the double-time Green's functions obtained in this way 
under the concept of electron propagators. A double-time Green's function where 
A and B are general number-conserving one-electron operators is called a polarization 
propagator. By inserting the second-quantization expressions for A and B the polariza- 
tion propagator may be expanded in terms of particle-hole propagators. 

The spectral resolution of a double-time Green's function, the Lehmann repres- 
entation, is given by 

<<A;B>>~, = ~ < ~olA I ~ > <  ~f [B[  ~go> _ ~ < g'o IBI ~ ,  > < ~I,I AI ~o> 
co + Eo - Ef + itl f, co + El, - Eo - it/ ' 

(2) 
where t/is a positive infinitesimal tending to zero in the distributional sense and the 
sums extend over the final states ~I and ~I '  reached by operation of A and B, and 
E I and E I, are the corresponding energies. 

If A is an observable of the system and B is an operator describing a pertur- 
bation, then the retarded polarization propagator for this case is identical to the 
linear response function [29]. Its spectral representation is 

<<A;B))~o = ~ < %IAI  ~s>< ~slBI % > s  co + Eo - E s + it/ - 2s, < %1BI ~gs,> < ~s, IAI ~ o > c o  + E s, - Eo + it/ 

(3) 
This formally differs from Eq. (2) in the position of the poles in the complex plane. 

Several notations are in use for the different electron propagators. For conve- 
nience, we will also employ the following: 

Gkz(co) = <<ak; a~- >>o) (4) 

(the one-particle propagator), 

Nklmn(co) = ( ( a l a k ; a  + a + >>~ (5) 

(the particle-particle propagator), 

~k,,~,(co) = < < a~- a k ; a ;  a,>>~ (6) 

(the particle-hole propagator). 
These propagators have the special form < < X k ; X i  ~ >) where X k  and Xl are 

operators of the same particle rank, distinguished only by the actual value of the 
indices k and I. The indices must be both of the same kind which may be one- 
particle, particle-hole or two-particle (two-hole) indices. The Lehmann represen- 
tation, Eq. (2), then becomes: 

z_.x'< % IXk I~f>< ~'flX?l~o> _ 2 < % IXi-i~'f, > < ~f, IXkl ~o) <<Xk;X? 
f co -k E o - -  Ef -I- it/ I' CO + E~, -- Eo -- it/ 

(7) 
The poles are cof = E I - Eo and co f, = Eo - E f , ,  i.e. the ionization potentials 

(IPs) and electron affinities (EAs) for the one-particle propagator, the double 
ionization potentials (DIPs) and double electron affinities for the particle-particle 
propagator and the excitation energies for the particle-hole propagator (and thus 
also for the linear response functions). 
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The residues are 

res~,s((Xk;X/-)) = (~UolXkl ~Jf)(~[Jf]X?]~lo) (8) 

and 

reso)~,(( Xk;X/~ ) )  = ('eolX? l'ef, ) (~ef, Ixk[ 'Co>. (9) 

It is useful to define a correlation factor for the corresponding spectra by 

zk = ( ~e~ I Xk 1% ).  (10) 

This quantity is a factor in the above residues of the propagator ( (  Xk;X/~ )). It is 
also accessible by wave function methods and it's behaviour for different levels of 
electron correlation effects will be discused in Section 2.3. Furthermore, it will be 
shown in Section 3 how these different levels of electron correlation effects turn up 
in the various spectra in terms of the correlation factors. 

The polymer case differs from the molecular treatment firstly by an additional 
k-dependence of the indices. The indices are usually composed of band and 
quasi-momentum indices referring to the canonical polymer orbitals which are 
assumed to have the following form [19, 20]: 

~gj(k) = N - l/2 ~, eikRncM(k)zu, (11) 
H# 

where k is the quasimomentum, H the cell index and N the number of unit cells. 
The limit N ~ ~ is then performed in the integrated expressions and yields the 
quasi-continuous k-dependence. 

2.3 Classification of correlation phenomena 

One can distinguish several different levels of electron correlation effects by 
considering different cases for the correlation factors introduced above. In this way 
one can identify the approximations which lead from Koopmans theorem and the 
quasi-particle picture to hole-mixing and breakdown effects. These phenomena are 
of a quite general nature and hold both for electron and polarization propagators, 
but have received most attention in the applications of electron propagators 
(one-particle- and particle-particle-) on photoelectron- [30] and Auger [31] spec- 
troscopy. There are essentially the following five levels of electron correlation, as 
we refer to in the sections to come: 

1. One Zk is equal to 1, the others are zero. In terms of Green's functions this 
means: re s ( (Xk ;X~- ) )=  6kt6kp for a particular (one-particle, particle-hole or 
two-particle) index p. The Har t ree-Fock picture is retained which implies that the 
energetics of the spectrum has to be analysed by Koopmans theorem, and inten- 
sities by the MO factor rk alone (see definitions in Eqs. (19), (33) and (39)). This in 
turn can be conducted in terms of MO theory, local densities, effective and strict 
selection rules as further demonstrated in Section 3. 

2. One Zk is close to 1, the others are close to zero. In terms of Green's functions: 
res ( (Xk;X[ , - ) )  is close to 1 for a particular index k. The quasi-particle picture 
holds. The energetics is considerably improved on Koopmans theorem. An MO 
analysis is still possible. 

3. More than one Zk enters in the wave function. In most cases this would also 
mean that these Zk factors are present in more than one state. In terms of Green's 
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functions: More than one ( (Xk;X  +)) enters in the residues. This situation is 
referred to as hole mixing, leading to electronic interference in the transition cross 
sections. 

4. One single Zk is large, but occurs in several states. In terms of Green's 
functions: One ( ( X k ; X [ ) )  occurs strongly in the residues of several poles. 
One can then not associate a 1-1 correspondence between pairs of MO:s  
(or MO factors) and spectral bands (states). Therefore, one can speak of a 
complete breakdown of the molecular orbital and the quasi-particle pictures in this 
case. 

5. No single Xk is large. In terms of Green's functions: No single ((Xk; X• ) )  has 
a large contribution to the residue of a certain pole. Such states are called 
correlation state satellites. 

3. Special spectroscopies 

3.1 Photoelectron spectra 

Photoelectron spectra represent one of the conceptionally simplest probes of the 
electronic structure of molecules and polymers. This is because they are essentially 
one-hole spectra. The appropriate propagator for their calculation is the one- 
particle Green's function. Ultra-violet and X-ray photoelectron spectra (UPS 
and XPS) emphasize different valence regions, namely the outer, respectively, inner 
valence regions. XPS spectra of polyenes and polyacetylene show evidence of 
strong correlation phenomena [32]. For the polyene oligomers several calculations 
have predicted these effects [33, 34, 30]. In terms of the correlation scheme given in 
the previous section they can be classified as breakdown effects. In the molecular 
case this has already been discussed several times [30]. Here we want to turn our 
attention to the fact that such effects are also predicted by one-particle propagator 
calculations on the complete valence region of polyacetylene [23, 24]. 

In the polymer case the spectral density of the advanced part of the one-particle 
propagator has been evaluated as a quasi-continuous sum extending over the 
occupied bands: 

A-  (o0) = ~, PIuf(E -cotv), (12t 
1,~ 

where the index I = (i, k) comprises band indices i and quasi-momentum k, p enu- 
merates the satellite bands, and coi, = e)~,(k) the pole strengths of the one-particle 
propagator. 

The poles are calculated from the inverse Dyson equation. Since the one- 
particle Green's function is diagonal in the k-indices, the Dyson equation can be 
written as a matrix equation over band indices only, but having a parametrical 
k-dependence: 

( I -  i ( k, o9) = G (°)-  1 ( k, o2) - M ( k ,  o9), (13) 

where G (°)- 1 is the inverse diagonal matrix of the interaction-free one-particle 
Green's function, the elements of which are 

G(°)ij - 1 tK,'" ¢o)" = (co - ~i (k)) 6 u (14) 
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and M is the matrix of the irreducible self-energy part in second order: 

mpq(k, co) = ~,, VpJKL(2VKLQJ -- VKLJQ ) × (~(k+kj)(kk +k,) 
JKL 

x {njvi/diL(co + ej -- er -- eL + it/) -1 

+ ajn~nL(e) + es -- e/~ -- eL -- iq) - 1 } (15) 

where nl are the occupation numbers (ri1 = 1 - n j), and Vtj~L are the two-electron 
integrals. 

The residues of the one-particle propagator are obtained as 

reso),, ((ak; at + ) )  = P~, f csiu I z, (16) 

where c:~ u is the J th component of that eigenvector of G-  a which belongs to the 
eigenvalue having a zero at ogtu. The pole strength is obtained as 

(17) 
- L  do) jo~,~ ' 

where Mz~ is the eigenvalue of M corresponding to the above eigenvalue of G. 
The results of the calculations in ref. [24] show that breakdown effects are 

responsible for the structures between 22 and 34 eV, related to the vacuum level, (or 
between 17 and 29 eV related to the Fermi level) in the XPS spectrum of polyacety- 
lene. In particular the 3a band is split into several components. At the origin of the 
Brillouin zone the splitting amounts to almost 1 eV, and the largest polestrength at 
this point is only 0.25. Hole mixing occurs between the 5~r and 6o- bands at the end 
points of the Brillouin zone (k = rt/a and k = - ~/a), but the admixtures are weak 
(the residues enter the pole strengths in a 0.06:0.41 ratio). 

The correlation corrections in the outer-valence region of polymers may be 
understood in terms of the electronic polaron model of solids [35, 36], which 
essentially just shifts the quasi-particle bands to lower binding energies. The 
mechanism in the innervalence region is analogous to that observed for finite 
molecules [30] and is due to an interaction of one-hole states with energetically 
close-lying one-particle-two-hole states. The appearance of these effects is depen- 
dent on the specific system. For example, there is no breakdown of the quasi- 
particle picture for polyethylene. 

3.2 Auger and DCT spectra 

A direct approach to the calculation of Auger and DCT (double charge transfer) 
spectra of molecules and polymers is provided by methods based on the par- 
ticle-particle propagator or particle-particle Green's function. This function was 
first introduced within the context of electron gas theory [37], and has later been 
applied to solid-state Auger spectra, e.g. Auger spectra of narrow-band metals 1-38]. 
The particle-particle Green's function has also been employed in ab initio calcu- 
lations of Auger spectra of finite molecules [39]. Further developments of these 
methods will be discussed below and have recently been reviewed in length in 
Ref. [31]. 

In the context of Auger spectra the relevant features of these methods are the 
following: The poles of the particle-particle Green's function, the double-ionization 
potentials, determine the position of the Auger lines on a binding energy scale. 
The residues of the particle-particle Green's function yield the correlation factors 
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modulating the matrix elements in the calculation of transition rates. The state- 
ment for the poles follows immediately from the Lehmann-representation in 
Section 2.1. The role of the residues is easily displayed by using a result of Manne 
and Agren [40] who evaluated the Auger transition rates from initial state 7Ji to 
final state ~I within Wentzel's ansatz. By imposing the single-channel and strong- 
orthogonality conditions to their general result they found that the rates in many 
cases of interest (e.g. K - L L  transitions with frozen ls orbitals) can be given in 
a simple form, namely: 

2 qr s 2 = , ( 1 8 )  

where the incoherent sum over the possible channels is implicitly assumed (referred 
to by the index u for the continuum orbital below) and 

T'qrs • Vuqrs- Elqsr (19) 

is called the molecular orbital factor and 

Zqr, = ( ~y la f f  ara,] ~ i )  (20) 

the correlation factor. 
Because of the almost perfect orthogonality between states with holes in 

different core orbitals or with holes in core and valence orbitals, it is motivated for 
all practical purposes to limit in the above expression the index q to one (q = c) to 
describe the core hole. Thus 

Zq~ = ( ~ j .  la~a~l C o )  (21) 

and Wf~ becomes the sum of the residues of the particle-particle Green's function 
fqkZm, modulated by the orbital factors [41]: 

1 
Wfi  = -2 Z clk Z*,m rest,  Nkl~.. (22) 

4 klmn 

The classification scheme of correlation effects of Section 2.3 applies to the above 
correlation factors. It may be noted that the analysis is usually further simplified by 
also decomposing the molecular orbital factor Zdk in a linear combination of 
contributions from atomic orbitals and invoking the one-center intensity model [42]. 

Diagram summation of the Feynman-Goldstone expansion of fqk~m, yields the 
Bethe-Salpeter equation which in defined cases may be cast into a factorizable 
matrix form. The terms appearing in the Bethe-Salpter equation and defining the 
corresponding sets of approximations are the irreducible vertex part K and the 
(renormalized) interaction-free two-particle Green's function fq(o). These terms can 
be interpreted as describing the interaction of the two holes with each other or with 
the rest of system, respectively. 

More explicitly, the Bethe-Salpeter equation determines the matrix of f# - t: 

f# - 1 (co) = f#(o)- 1 (co) - i f ,  (23) 

where the elements of the first-order irreducible vertex part are given by 

j~[F(S, T) Vklmn + / -- Vkz,,, if k < 1 and m < n, (24) klmn 

jd(s) = Vktm, if k = l and m = n, (25) klmn 

(s,T) .,/2 Vk kz,.. = l. .  if either k = I or m = n. (26) 
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The different signs refer here to singlets (S) or triplets (T). In the second order of the 
irreducible vertex part, not considered here, the two-particle integrals enter quad- 
ratically and energy denominators appear [43]. 

The renormalized interaction-free particle-particle Green's function N(o) is 
given by 

¢(o) (co ~ PkuP~" 
k l m n ,  ) = 7 k l t ~ k m t ~ I n  - - - - -  , (27) 

0 )  - -  O ) k #  - -  O ) l v  

where co~, are the poles of the one-particle Green's function, Pk, the corresponding 
residues and 7kl is - -  1 if k and 1 refer to occupied orbitals, + 1 if they refer to 
unoccupied orbitals and zero otherwise. 

To determine the poles of N one can solve for the zeros of the eigenvalues of 
.~-t  from the Bethe-Salpeter equation. For practical calculations the above 
pole-search problem may be conveniently transformed into an eigenvalue problem. 
The price to be paid is that the dimension of the matrices even with first order 
vertex part is already larger than that of a two-particle-RPA because of the possible 
combinations of additional (non-quasi-particle) poles of the one-particle Green's 
function. 

In this approximation hole mixing is mediated through the irreducible vertex 
part and breakdown effects enter through the renormalized interaction-free two- 
particle Green's function which contains the poles and residues of the one-particle 
Green's function. The one-particle data can be compared to photoelectron spectra 
and it is thus possible to trace down how breakdown phenomena in the photo- 
electron spectrum influence Auger spectra. 

In addition to the Bethe-Salpeter equation other approximation schemes for 
the particle-particle Green's function have been developed. On the one hand they 
are derived by the algebraic diagrammatic construction (ADC) scheme [34] and 
effective Hamiltonian transformation techniques [44], on the other by the super- 
operator resolvent representation of the particle-particle Green's function [45] 
and multiconfigurational versions theoreof [46]. These different treatments of the 
two-particle Green's function will in general lead to other levels of approximation 
than defined above in the context of the Bethe-Salpeter equation. There are, 
however, some simple approximations (e.g. the Tamm-Dancoff approximation) 
which are obtained as the first steps in all these formulations. 

In the polymer case the Bethe-Salpeter equation can be transformed to the 
following form [47] which is analogous to the exciton representation of the 
particle-hole propagator: 

~ - I ( K ,  co) = .~°)- l(K, co) - ~ ( K ) ,  (28) 

where the transformed matrices in the mixed representation have cell and two-hole 
indices. They are given by 

1 ~ P , u ( k ) P j ~ ( K  - -  k)  
- o  d k  e x p ( i k ( n s ,  - n~)) ~s , i ' j ' s i j (K,  o~) = 7i j6i , i~j , j  ~ . i  _ ~ ~,~ co --  CO~u(k ) - o,~i~(K - k)  ' 

(29) 

where s' and s are the cell indices, c% (k) the quasi-particle bands and P,, the pole 
strengths, and 

~ s , r j , s i j ( K )  = ~ e x p ( i K R , ) Y g ; i j ( u  + s', u, s, 0) (30) 
u 
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where ~ w  is the irreducible vertex part taken with Wannier functions centred at 
the cells given in the four arguments. Therefore, finding well-localized Wannier 
functions is important for keeping the computational effort within limits. Several 
procedures for localizing Wannier functions by appropriate variation of the phase 
factors of the Block functions have been suggested [21, 48]. 

The localization properties of the Auger final states in the first oligomeric 
members of the polyacetylene sequence have been analysed by the particle-particle 
Green's function method in order to extrapolate the dicationic states of the 
oligomers to corresponding final states of the Auger process in polyacetylene [49]. 
Band shape formation and the localization properties of the Auger final states in an 
infinite system are topics of interest in this context. 

An unsaturated hydrocarbon system is expected to display considerable cor- 
relation effects. For polyacetylene this has been evidenced in terms of breakdown 
effects in the photoelectron spectrum both experimentally [32] and theoretically 
[-24]. The calculations [49] predict strong hole-mixing effects in the low binding 
energy region of the Auger spectra of polyacetylene. It is possible to relate these to 
corresponding effects in the Auger spectra of butadiene and hexatriene where they 
lead to observable sharp peaks [49]. 

In butadiene the highest occupied lbg orbital is a combination of the two 
left-hand carbon p~ atomic orbitals and of the two right-hand carbon pz's with 
opposite sign, but equal magnitude of the components. In contrast, the next highest 
occupied orbital, lau, is a combination of the carbon pz orbitals with qualitatively 
similar magnitude of the components as in the HOMO, but equal sign for all four 
carbon pz orbitals. State interference leads to two states in this case, one where the 
lbg double-hole configuration essentially is mixed with the lau double-hole config- 
uration with opposite sign and mixing coefficients of the same order of magnitude, 
and one where the two configurations enter with equal sign. In the first case the 
final state contains mainly contributions where the two holes are located at 
different sides of the molecule, in the second case the main contributions have the 
holes at the same side of the chain. Naturally, hole-hole interaction is smaller in the 
first case than in the second case, so the state appears at lower binding energy 
(26.39 eV) than the other (31.88 eV). The coupled site-selectivity leads to lower 
intensity in the first case than in the second. A corresponding situation exists in 
hexatriene: The highest occupied orbital is 2au and has Pz components with equal 
sign at both sides of the chain, whereas the next orbital, lbg, has a change in sign 
across the middle of the molecule. Again, the two-hole configurations from these 
two orbitals lead to two states, the first at 21.51 eV binding energy describing the 
delocalized case and being responsible for the first peak on the tow binding energy 
side of the spectrum. The second describes the case where the two holes move at the 
same side and, being situated at 25.70 eV binding energy, contributes to the second 
peak in the spectrum. 

The above-described scenario remains valid for polyacetylene. The only diff- 
erence is that the completely delocalized states do not appear in the polymer 
spectrum because there they cannot carry intensity. Thus the onset of intensity in 
the calculated polymer spectrum [49] is determined by those states only which 
represent a coupled motion of the two holes within each other's vicinity. In contrast 
to saturated hydrocarbon chains, the polyacetylene spectrum is largely dominated 
by outer-outer valence double-hole states. 

Compared to other spectroscopies, band formation in the Auger lineshape 
should be fast because of the local probe character of this spectroscopy. For the 
oligomers of the polyacetylene sequence considered here, however, convergence of 
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the lineshape was not reached up to hexatriene as can be evidenced by comparison 
of the calculated oligomer spectra with the calculated polyacetylene spectrum. This 
behaviour must be considered to be a consequence of the slow convergence of the 
lattice sums for polyacetylene. It is typical for a low-gap semiconductor and stands 
in contrast to the situation in insulating polymers like polyethylene. In the latter 
case it is known that the convergence of the alkane Auger lineshapes to that of 
polyethylene is comparatively fast [50, 23]. 

3.3 X-ray emission spectra 

We have applied an ab initio one-particle propagator method to the calculation of 
X-ray emission spectra (XES) of finite and infinite polyenes 1-51]. The method was 
derived from a two-step formulation of the X-ray emission process, aiming at 
a tractable computational scheme for these systems. The approximations which 
lead from a one-step description, starting out from multi-channel resonance scat- 
tering theory, to two-step models, separating deexcitation from excitation, are in 
principle known [52-55]. Provided that X-ray emission can be treated within the 
two-step model for electron-molecule or photon-molecule inelastic scattering, 
with core excitation and decay separated, the X-ray spectral rates can be analysed 
starting out from Fermi golden rule like expressions. In relative units these take 
the form: 

2 

We: ~- E3t(Ti lDITJ:I:  = E 3 ~x ZXZx , (31) 

where Ti and 7J: are, respectively, the core ionized and valence ionized initial and 
final states in the N - 1 electron system. The rate is thus expressed as a sum of 
terms, each of which constitutes a product of a molecular orbital (MO) factor zx 
and a many-body factor )~x. The slowly varying energy factor preceding this 
expression is omitted for simplicity. In X-ray emission x stands for a double index 
p, q, because the many-electron dipole operator D is written 

D = ~ (Op l d f Oq)a ;as ,  (32) 
P, q 

where d is the one-electron dipole operator, and {qSq} and {q~p} are sets of 
molecular orbitals that in general are mutually non-orthogonal. 

The product of molecular orbital and many-body factors resolves as 

zx)~x = ( O p l d l O q ) ( ~ f : ( g -  1)lap-aot ~ ( N -  1)). (33) 

For all practical purposes, it is motivated to limit the index p to one, corresponding 
to the creation of a core hole at one specific site, p = c, due to the almost perfect 
orthogonality ()~x -~ 0) between states with holes in different core orbitals or with 
holes in core and valence orbitals. For molecules with several core hole sites the 
result is a superposition of X-ray spectra each treated separately (different index p). 
The molecular orbital factor is defined by a common set of orthogonal molec- 
ular orbitals that can be optimized for any state involved in the X-ray emission 
process, but that in our computations always are defined by optimizing a single 
determinant wave function for the neutral ground state. With the two approxima- 
tions given above, the truncation of the p index to one, referring to the core orbital, 
and the neglect of non-orthogonatity (orbital relaxation), which is the critical 
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approximation, the above expression is replaced by 

z.,:)~ =- ( (ocldl ~)q) ( ~ f ( N  - 1)laq[ ~o(N)), (34) 

since under these assumptions the action of aql~o ( N ) )  and a~ aal tiUi(N - 1)) is 
the same. The electronic factors are by definition the residues of the one-particle 
Green's function, r e s  Gkl, as defined in Section 2.1 above. Using the one-particle 
Green's propagator the X-ray rates are therefore given as 

X y z  

W~.r -- ~ ~ ( 4~,ldi I (~)  (Ckcldll (~k) reso± Gkl, (35) 
kl  i 

where coy is the pole corresponding to the final state ionization potential. Thus 
under the assumptions given above the Green's function analysis of the X-ray 
emission spectrum will be equivalent to the one for the (valence) photoelectron 
spectrum, only different MO factors are involved. 

The energies of the emitted X-ray photons are obtained from the poles of the 
one-particle propagator, the ionization potentials, because 

hvx = IP~ - IP  I (36) 

where IPc and IPI denote the initial core and final valence state ionization 
potentials, respectively. 

The above equations are related to the result obtained by Kondratenko, 
Gel'mukhanov et al. [56] by evaluation of the Kramers-Heisenberg relation for the 
cross section of inelastic resonance X-ray scattering. By invoking the two-step 
approximation for the process and considering only the second step, the core hole 
decay, we avoid calculation of the natural linewidth. Thus we assume the reson- 
ances in the cross section to be of the Dirac delta form and compare their positions 
to the local maxima of the experimental spectrum. Calculation of linewidths would 
require explicit consideration of the interaction with the continuum to take into 
account nonradiative (Auger) contributions in addition to the radiative linewidth. 

The different cases for correlation effects described in Section 2.3 apply for the 
correlation factors in Eq. (35), and one recovers the approximations which lead 
from Koopmans theorem and the quasi-particle picture to hole-mixing and break- 
down effects. 

Using a one-centre decomposition of the orbital factor one obtains for the 
transition rates: 

Wcy = ~ Hi Hi* ~7 * (37) ~.-ct~ ~.~c.,, z.., cut cvt res~oy akt, 
i ,  l~, v k l  

where M~ u = (qScidi[qS~) are the dipole matrix elements between the initial state 
core hole qSc and the #th valence orbital. The x, y or z components of the dipole 
transition operator are here explicitly introduced by index i. 

Similarly, one finds in the case of a polymer I-51] 

Wc(E) = ~ ~, ~..~,a/t i ~..~H i* dk dk' 6(E - cos(k)) 
~ v  i j l f  J - -  ~z , ) - -  7z 

t * ! t x c,~ (k) c vl (k) reso,~(k) G jr (k). (38) 

The calculations in [51] showed that the 2p localization that fingerprints the 
ethylene XES spectrum is gradually distorted in the process of delocalization. 
A problem is, while polyacetylene and the smallest subunit ethylene contains only 
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topologically equivalent carbon atoms, all other members of the oligomer sequence 
contain nonequivalent carbon atoms. This leads to initial state chemical shifts that 
displace the accompanying X-ray emission transitions leading to a total spectrum 
of several overlapping core-sited sub-spectra. A recent study of the core electron 
chemical shifts [57] shows that there is a regular attenuating trend of end to bulk 
atom binding energies converging to the polyacetylene value, thereby displaying 
a quasi-one-dimensional analogue of surface to bulk chemical shifts. The effect of 
this on the X-ray emission spectrum is a gradual overall broadening going from 
ethylene to hexatriene, which turns into a sharpening as the "bulk" atoms with 
small shifts outnumber the end atoms with larger shifts. 

It is found that band shape formation is slow in the X-ray emission spectra of the 
polyene sequence. This is expected from the results of other spectroscopies. It is 
interesting to compare with the situation in polyethylene: In the alkane sequence 
a single C 2s band starts to develop already in the n-butane photoelectron spectrum 
[58] and for the n-nonane photoelectron spectrum it is almost identical with that of 
polyethylene. Due to the Peierls distortion the dimerized unit cell of polyacetylene 
contains two nonequivalent carbon atoms. Therefore, two C 2s bands are formed for 
the polyenes considered here, namely one (30-) between 24 and 29 eV and the other 
(40-) between 17 and 24 eV. Furthermore, in polyacetylene the C 2s and C 2p regions 
are merging whereas they are clearly separated in poly-ethylene. 

Since the orbital factor in the XES rate probes essentially the outer valence 
populations the XES intensity is stronger in the outer- than in the inner- valence 
energy range, compared to the polestrength of the one-particle Green's function in 
the molecular case or the spectral density of the one-particle Green's function in the 
polymeric case. 

The resulting polyacetylene spectrum using the local probe character of XES 
appears to be rather ethylene-like [51]. It can be concluded that the molecule-like 
lineshape appearance for polyacetylene is not reached via formation of narrow 
bands: The highest valence band, (1~), is 7 eV broad, the next two (09 C 2p bands 
are 3 and 4 eV broad respectively. Instead, the polymer peaks originate from the 
singularities of the density of states which almost coincide for the bottom of the 
highest and the top of the next valence band (6o-) around 12 eV [59, 24]. Further- 
more, the bottom of the 6a and the top of the 5o- band are together responsible 
for the structure around 14-15 eV, and the bottom of the 50- band contribute to the 
structure at 16-17 eV, where the C 2s region (3o- and 4a) starts. A site selectivity 
seems to emerge from a qualitative similarity of the discrete XES intensity distribu- 
tion of the ethylene spectrum with the ratio of XES intensity to spectral density in 
the various parts of the polyacetylene spectrum. This can be interpreted as a mani- 
festation of a local similarity of the correlated wave packets formed from the 
polymeric one-hole states in those energy regions to the corresponding molecular 
orbitals of the oligomeric subunits. 

3.4 Near-edge X-ray absorption spectra 

As in the case of X-ray emission we start out from the Fermi golden rule, Eq. (31), 
where ~i and 7~i are now the neutral initial state and the core-to-bound excited 
final state of the N electron system, respectively. Proceeding as in Section 3.3 
above, the NEXAFS rates resolve as 

rxZx = ~ Oq ]dr 0~) ~ Tf (N)[a + aq [ tPo (U)) (39) 

into a product of molecular orbital and many-body factors. 
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In the NEXAFS case it is justified to limit the index q to one, corresponding 
to the creation of a core hole at one specific site, q = c, due to the almost perfect 
orthogonality (Zx - 0) between states with holes in different core orbitals or with 
holes in core and valence orbitals. This complies also in some sense with that 
simultaneous two-core sited spectra are not observed. The same arguments as in 
X-ray emission apply, only that we deal with an N- instead of an N - 1 electron 
system and in that the core hole enters in the final instead of the initial state. For 
molecules with several core hole sites the result is a superposition of X-ray spectra 
(different index q) according to Eq. (39), which all can be treated separately. The 
molecular orbital factor is here computed out of one set of orthogonal molecular 
orbitals. In the X-ray emission case it is natural to choose the set of ground state 
canonical Hartree-Fock orbitals. For the NEXAFS case this set is not appropriate 
since its virtual orbitats are given by an N instead of an N - 1 electron potential. 
We simulate here the removal of an electron from the N-electron potential by an 
addition of a proton, thus we optimize the set of orbitals by diagonalizing the 
equivalent cores (Z + 1) Fock matrix. For example, for ethylene the equivalent 
cores Fock matrix refers to CHzNH~.  In doing so we neglect the core-virtual 
exchange interaction and thus singlet-triplet splitting in the NEXAFS spectrum. 
Since triplets are dipole forbidden all intensity is collected into the singlets and 
we still obtain the correct number of states in the Green's function calculation, 
although it yet neglects the core-virtual exchange. The core-virtual exchange 
two-electron matrix elements are generally small, only a few tenths of an eV, see e.g. 
work on carbonyl shake-up spectra in Ref. [60]. The application of the equivalent 
cores approximation also infers a localized, broken symmetry, solution for the core 
excitation process. 

With the three approximations outlined above, viz. truncation of the p index to 
one, referring to the core orbital, the neglect of non-orthogonality (orbital relax- 
ation) and the representation of the core hole system by its equivalent (Z + 1) core 
Eq. (39) is replaced by 

zxT.~ = ( OcIdl ~)p) ( Tx(N)I a;  ITc(N - 1)), (40) 

where 

Te(N - 1)) = ae[ T o ( N ) )  (41) 

has been introduced as a new reference state. We define a Green's function G~a for 
this reference state by replacing To(N) by T¢(N - 1) in Eqs. (1) and (4). 

= _ i |  ~ _ _ 

/ i  

G~(co) dt ei°~( Tc(N 1)IT {3k(t)~/- } ] T~(N 1) ).  (42) 
.J - - o O  

The electronic factors in Eq. (40) are then by definition the residues of the 
one-particle Green's function given above, res Gkz. Using the one-particle Green's 
functions the X-ray rates are therefore given as 

x y £  

Ws = ~ ~ (¢/Idil ¢c) (4~cldilq~k) res~,s G~z, (43) 
kl  i 

where ~oy is the pole corresponding to the final state electron affinity of the core 
ionized system. 

Thus under the assumptions given above the Green's function analysis of the 
X-ray absorption spectrum will be equivalent to the one for the inverse photo- 
electron (electron attachment) spectrum of the core hole ion, only different MO 
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factors are involved. The classification scheme of Section 2.3 applies to Eq. (43). 
The absorbed photon's energy is related to the electron affinities EA) of the core 
ionized system by 

hvx = IPc - EASy (44) 

where 1Pc denotes the core ionization potential of the neutral system. The EA) values 
are by construction obtained as the negative of the corresponding (N + 1) particle 
poles of the above Green's function G~,f. Only the bound-state electron affinity poles 
are considered in the present framework (i.e. positive EA's). We make no assumption 
about the initial state ionization potentials and obtain the final X-ray energies 
in Eq. (44) simply by subtracting the binding energies EA) from the experimental 
core ionization potentials. The above electron affinities are understood as 
EACy = E c ( N -  1 ) -  Ey(N) where the ground state geometry is assumed for both 
states involved (vertical transitions). Since each pole corresponds to its residue 
entering the transition rate, the correlation properties are the same as those for the 
transition rates, which will be discussed below. It is interesting to observe the 
similarity in the treatment of X-ray absorption and emission in the present formal- 
ism. However, while the binding energies in the emission case evidently are common 
for different spectra pertaining to different core holes (the full spectrum is obtained 
from one single Green's function calculation), they may differ in the absorption case 
for different core hole sites (due to the different choices of the reference state). One 
thus needs one Green's function calculation for each different core hole site. 

Several approaches have been reported for the calculation of NEXAFS spectra 
of intermediate size within the one-particle approximation. The most commonly 
used methods are the static-exchange molecular orbital model, and the multiple 
scattering X~ methods. These methods cover NEXAFS spectra in both discrete and 
continuum parts, but interpret the NEXAFS features from quite different physical 
points of views, the molecular orbital, respectively, potential barriers models. Much 
of the applications of these models have been focussed to the correlation of 
resonance positions with the molecular structure. For a recent review we refer to 
Ref. [61]. Explicitly correlated methods have been used for interpreting NEXAFS 
spectra to a somewhat less extent. Examples are given by state specific methods, 
such as configuration interaction [62, 63] and multi-configuration SCF [64] 
methods, or propagator oriented methods, such as the so-called ADC-2 method 
[65]. Although these methods have made novel interpretations in terms of multi- 
electron excitations [62, 63], and vibronic couplings [65], they are rather restricted 
to size of the molecules that can be studied. Larger molecules have mostly been 
treated by MSX~ and other semiempirical methods [66], and very recently also by 
the so-called direct atomic orbital techniques [67]. 

The method advocated above [68] seems to be particularly suited for a treat- 
ment of molecules and polymers on a common correlated ab initio level. In contrast 
to other approaches to NEXAFS via the particle-hole propagator [65], our 
procedure is based on a special one-particle propagator and thus offers a simpler 
access to the spectra. 

For the polymer case the procedure [68] resembles the Koster-Slater type 
methods for impurities in solids [69, 70]. It is based on ab initio calculations with 
correlation on the bulk as well as on the clusters (with and without perturbation). 
Whereas it is impractical to explicitly iterate for effects of the local perturbation 
on self-consistency [71, 72, 73, 74, 75] if one is interested only in the bound states, 
we obtain a parameter-free (non-tight-binding) description of the emergence of 
bound states under influence of the perturbation. 
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In order to calculate the bound states induced in the band gap of polyacetylene 
by the presence of the defect representing the equivalent core for the C ls holes, one 
has to solve the equation 

det [1 - ~o(co) V(co)] = 0, (45) 

where ~o is the (correlated) one-particle Green's function of the periodic system in 
the contravariant atomic orbital basis: 

l £ P~(k)e ik(Rn-RJ) 
CJ°H, vJ (co) = ~ dkc,  z (k)c*l (k) (46) 

_ ~ c o  - c o ~ ( k )  ' 

where #, v are atomic orbital and H, J cell indices, and co~(k) and P~(k) are the 
quasi-particle bands and the corresponding residues of the one-particle Green's 
function of the periodic system, and c,~ are the Har t ree-Fock crystal orbital 
eigenvector coefficients. 

The defect matrix of the inverse one-particle Green's function is given by 

V,  ~(co) = ~cPutc~[ ~ e ) -  col v, o o. c o -  coo (47) 
' t P f  -2..t c.lcvz pO , 

o and c~ are the cluster Har t ree-Fock eigenvector coefficients for the where c~t 
unperturbed and the equivalent core system, respectively, coo and pO are the 
corresponding poles and residues of the cluster one-particle Green's functions, 
respectively. The dimension of the above secular problem is determined by the 
cluster size inherent in the atomic orbital indices of V. It comprised six CH2 units in 
a double-zeta basis in the case of polyacetylene [68]. 

The calculations by this method [68] show that the lowest bands in the discrete 
butadiene and hexatriene spectra are due to core excitations to the lowest re* levels 
pertaining to the different core-hole sites, that the second strong-intensity regions 
in these spectra are composed of several strong o. excitations, and that there is 
a significant reduction of the n-to-o, intensity ratio with addition of C2H2 units. 

Butadiene has been shown as an example for which symmetry selection rules 
of NEXAFS can be used to correlate spectral features with the orientation of a 
molecule on a surface [76]. In order to see what information Green's function 
calculations can supply in this respect, we review the butadiene case in some detail. 
The low energy part of the butadiene spectrum contains an intensive double-band 
feature. This feature is well reproduced by the Green's function calculation [68] 
which places the two Cls-n* transitions at 285.22 and 284.94 eV for middle and 
end carbon ls hole with intensities in a ratio of 2.07:0.97. The calculation thus 
confirms the interpretation [64] of this double-peak feature as due to chemically 
shifted transitions to the first n* level from the end and mid-carbons. Further up in 
the butadiene spectrum, at 287-289 eV, there is an odd three peak structure, and 
even higher up one finds broad features ranging between 10 and 30 eV above the 
ionization threshold, assigned to a type shape resonances [77]. The interpretation 
of the 287-289 feature is controversial. MCSCF calculations [64] indicated that 
o.-type excitations contribute to this feature. Polarization measurements of bu- 
tadiene on a silver surface [77] did not reveal o. excitations but supported a second 
n* level at 288 eV. The polarization dependence of the three higher lying reson- 
ances was the reverse, indicating o. resonances (C-H*, o'*-c, and o-*=c). It is 
therefore interesting that the Green's function calculations [68] predict a number 
of peaks in the region; the two lower and more intensive ones are of o. symmetry 
the higher one of n symmetry. The large intensity indicates by itself the valence 
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character of these excitations. Thus both the MCSCF and Green's function 
calculations reject the notion of two single rc* levels at 284 and 288 eV as inferred 
from a building block principle. 

For hexatriene and larger polyenes it is interesting to explore to what extent the 
"chemical shift" of the Cls-rc* excitation covariance the Cls electron binding 
energy. The first of the two intense bands in the hexatriene spectrum comprises the 
three Cls-rc* transitions corresponding to the middle-, penultimate- and end 
carbons, respectively [68]. It can be noted that the end carbon has the lowest 
excitation energy and the penultimate carbon the highest. This complies with that 
the end carbon also has the lowest ionization potential (IP) and the penultimate 
carbon the highest [57]. Since initial state effects are ignorable for core IPs of 
hydrocarbons this reflects differences in the core hole screening relaxation between 
the different carbon atoms. 

The one-particle approximation is sufficiently well recovered by the Green's 
function calculations to warrant an MO analysis. However, the molecular orbitals 
to be used for interpretation should be the ones corresponding to the final states, 
relaxed and relocalized according to each particular core hole. The building block 
picture in which the larger oligomer spectra are derived from overlapping orbitals 
of the ethylene subunits is not warranted. 

For polyacetylene the lowest ~ transition rate is very small in the uncorrelated 
calculation. In the correlated calculation the electron affinity of the core ionized 
system for this transition seems to be merging with the onset of the valence band of 
the unperturbed system which the calculation places at 5.32 eV binding energy with 
respect to the core IP (290.2 eV [57]). The effects on the transition rate of this state 
indicates delocalization of the screening ~ electrons, in agreement with the finding 
that the states seem to interact strongly with the bulk plane-wave states. This trend 
is already indicated by the oligomer results, where the lowest rc state transition 
rates for a middle Cls hole are rapidly decreasing with chain length. A different 
behaviour than for the ~z states is displayed by the o- type bound states. For these 
states the transition rates remain of the same order of magnitude for all chain 
lengths, which points to less delocalized states. The binding energy with respect to 
the core IP is 1.60 eV for polyacetylene and thus slightly smaller than for the 
oligomers (2.49 eV for butadiene and 1.84 eV for hexatriene). The peak at 284.1 eV 
in the experimental core excitation spectrum of polyacetylene [78] should, there- 
fore, be arc state. The calculations of polyacetylene predict a significant reduction 
of the re: a intensity ratio, which is in line with the reduction of this ratio obtained in 
the calculations for the oligomer sequence. 

3.5 One-photon absorption spectra 

The possibility to compute polarization propagators or response functions 
by solving response equations of large dimensions has opened a broad niche of 
molecular applications. The propagator of Eq. (3) can be expressed as 

( (A;  B}}~,I = - eA [ 1 ] ( e E [ 2 ]  - -  co~ S [ 1 ] )  - 1B[I] (48) 

and obtained by solving the linear set of equations 

N b ( c o l )  = (eEL2J - -  co~ S rl 1) - ~ g i n .  (49 )  

It can thus simply be expressed as the solution vector times a property vector. 

B r ((A;))o,1=--eA[~]Nb(coa) .  (50) 
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The ingoing frequencies (col) are obtained by first solving a response eigenvalue 
equation. The definitions of the constituent matrices, hessian- (Et2~), metric- (S tlJ) 
and property- (A t~J, B t~J) matrices, can be found in the original articles [29, 79]. The 
large dimensional solutions are obtained by direct iterative techniques, by matrix 
times trial vector multiplications without storing the generating matrix explicitly, 
as in optimization of large scale correlated wave functions (direct CI [80], direct 
MCSCF 1-81]). Thus the sum-over-state value for the property in question can be 
obtained without having to perform the summations in Eq. (3) explicitly, or having 
to diagonalize the hessian or metric matrices completely, something which is 
prohibited for any but the smallest systems. This methodology is well documented, 
see e.g. Refs. 1-29, 79, 82, 83], and many current applications have demonstrated its 
utility in broad contexts. 

In the response or polarization propagator methodology the one-photon spec- 
trum, viz. excitation energies and transition moments, are obtained from the single 
and double residues for the linear response function. The shorter polyenes serve as 
good test cases for such calculations since undisputable experimental results are 
available for comparison. The one-photon spectra and the optical properties of 
polyenes are important also because they have a bearing on the possible conduct- 
ing properties of the corresponding polymer. Thus the simulations of polarons and 
solitons in longer doped chains should preferably be carried out with methods that 
can address the one-photon spectra properly. The distribution of oscillator 
stengths, the organization of the lowest excited states, and in particular the band 
gap must be reproduced correctly. The electronic one- and two-photon spectra 
become progressively more compressed with a narrowing band gap with the length 
of the chain, and excitation energies and oscillator strengths must be reliable in 
order to assign spectra. With this in mind one- and two-photon absorption spectra 
(OPA and TPA) of ethylene, trans-butadiene, trans-hexatriene and trans-octatet- 
raene were recently investigated by means of linear and quadratic response theory 
calculations in Ref. [84]. It was demonstrated that accurate results for the one- 
photon excitation spectra of these short polyenes indeed can be obtained already 
at the lowest level of response theory, namely the random phase approximation 
(time-dependent Hartree-Fock). The excellent agreement with experiment, within 
one or two tenths of an eV for all four molecules, indicated that the compara- 
tively simple but still well-defined random phase approximation (RPA) method has 
important ramifications for the study of linear optical properties of the conjugated 
polyenes. It is relevant to mention that polarizabitities generated by RPA are 
within a few percentage of the vapour phase values at the corresponding frequen- 
cies. Accurate polarizabilities are prerequisites for calculations of the one-photon 
spectra since they connect through the second order sum rule for spectral moments. 
In response theory gauge invariance and sum rules are obtained in the limit 
of a complete basis set, which also are useful facts for qualifying obtained 
results. 

The excited states of the polyene molecules can be divided into two categories 
according to the selection rules imposed by symmetry. The first kind of states are 
one-photon allowed only, while the second kind only can be reached by two- 
photon transitions. The energetics of one-photon transitions have been carried out 
by different theoretical methods, and by RPA as early as 1971 (spectrum of ethylene 
molecule computed by Shibuya and McKoy [85]). Excited state energies of 
ethylene has also been studied with the random phase approximation by Bouman 
and Hansen 1985 obtaining quite good agreement with experimental data [86]. 
More recently spectra have been obtained using multi-configuration linear 
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response [-79] (MCLR), however, most of the success of later applications must still 
be ascribed the use of good basis sets, giving results believed to be close to the RPA 
basis set limit for one-photon spectra and polarizabilities [84]. Basis sets of two 
categories have mostly been applied, namely polarizability consistent [87, 88] and 
correlation consistent [89] basis sets optimized for the constituent atoms, and 
augmented with sets of appropriate diffuse functions [90]. 

Concerning the detailed assignments of the polyene spectra one has mostly 
focussed on the lowest one-photon allowed tBu states and the lowest one-photon 
forbidden tag states (discussed in next section). The excitation energy for the 1 ~ Bu 
state of butadiene, which represents the major feature in its electronic spectrum, 
has been a key issue in a large number of theoretical studies. The results have, 
however, been rather disparate [4], something that is claimed to derive from the 
delicate balancing of Rydberg and valence contibutions to this state. Only two very 
recent computations have given excitation energies for this state in reasonable 
agreement with the experiment, 6.14 eV [-913 and 6.12 eV [90], compared to the 
experimental value of 5.92 eV. From this outset, the excellent agreement obtained 
by RPA is quite remarkable, within few hundreds of an eV for different basis sets 
[84]. That this is not fortuitous can be understood by that similar calculations give 
excitation energies for ten singlet states with an error less than 0.19 eV compared 
with available experimental data. Also oscillator strengths obtained at the RPA 
level are found close the experimental values when these are available. The general 
experience from aromatic compounds for which experimental oscillator strengths 
occasionally are available, is that they indeed are well recapitulated by linear 
response theory [92], although in that case excitation energies from RPA are of 
somewhat poorer quality than for the aliphatic compounds. With excitation 
energies and oscillator strengths of good quality, successful assignments of spectra 
as complicated as that of hexatriene and octatetraene can be accomplished [843. 
Going to larger polyenes reliable oscillator strengths are absolutely crucial in order 
to sustain assignments. 

It is ironic to note that the lowest level of response theory, RPA, gives 
one-photon excitation energies of the short polyenes of the same quality, or 
actually even better than the most sophisticated state-specific methods (n.b. 
CASPT2 [90]). This is certainly not the case for the aromatic compounds [93]. The 
excellent agreement found for polyenes and other aliphatic compounds [84] have 
important consequences, since RPA is both well-defined, size extensive and applic- 
able to large species. This has recently been demonstrated through the develop- 
ment of so-called direct atomic orbital techniques for both linear and quadratic 
RPA [94, 5]. MCLR with limited correlation spaces, e.g. ~ spaces, does not 
necessarily improve results, since the static (valence) and dynamic (non-valence) 
electron correlation in general tend to have opposite effects for hydrocarbons like 
the polyenes. It has also been found that state-specific CASSCF calculations even 
give a reversed order for the tBu states with the valence state above the Rydberg 
states [90]. Calculations performed with Hamittonian including ~-electrons also 
exclude dynamic correlation, and results obtained from methods like PPP or 
extended Hubbard can be of mixed quality. 

The success of RPA for polyenes is somewhat hard to rationalize since response 
theory calculations cannot be compared directly with state specific methods with 
respect to correlation. RPA is generally considered appropriate for states described 
by wave functions with dominating single excitations; it is a single-particle-hole 
approximation to excited states which allows for the presence of two-particle and 
two-hole pairs in the ground state [85, 95]. Its multi-configurational analogue [79] 
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(MCLR) "adds correlation" to the excited states more than that covered by the ground 
state correlating space. In any case, providing a set of excitation energies and oscillator 
strengths in one batch of calculations, linear response theory is a very powerful tool for 
assigning complex one-photon spectra such as those of the short polyenes. 

3.6 Two-photon absorption spectra 

The generalization of polarization propagator theory to non-linear phenomena has 
made possible many new interesting applications with respect to modern spectro- 
scopy. As for the linear case the computation of quadratic response functions 
alleviate previous obstacles for systems described by large-dimensional wave func- 
tions, in principle by solving sets of equations rather than by performing explicit 
summations. Applications have been carried out for different phenomena such as 
two-photon absorption, hyperpolarizabilities and phosphorescence. The deriva- 
tions of linear and quadratic response functions and their residues can be found in 
the original paper on quadratic response theory applied to exact and MCSCF 
states by Olsen and Jorgensen in Ref. [-29]. Briefly stated, the evaluation of the 
quadratic response function for operators A, B and C (here components of the 
dipole operator) is expressed as [29] (Einstein summation) 

((A; B, C))o~,o~ = N~(o31 + O3z)B~.21N~(O32) + N~(o31 + o32) C~21N~(o31) 

+ N~(o31)(A~ 21 + A[kZl)N~(O32) 

- -  N~(o31 _~ O32)(E~13~ + E~321 - -  o31OjltnO[3] 
[31 b c -- o3aS jmz)Nt(o31)N,,,(o3a) (51) 

where E t33 and S TM in Eq. (51) are generalizations of the RPA Hessian and metric 
matrices, while A t2~ (B t21, C t2a) are generalizations of the property matrix 
Am(B m, C m) and are given in Ref. [29]. In order to obtain the ingoing solution 
vectors N °, N b and N ~ one needs to solve the three linear sets of equations 

N"(O31 + o92)= [(E [21 - - (6Ol  "-~ o32)St21)-lAtlt+] +, 

Nb(O31) = ( E  [21 __ o31 S [ 2 ] ) -  1B[I]  ' 

N~(O32) = (Et21 _ o32S[2]) -  1 C[1]. (52) 

The single residue of the quadratic response functions gives the second-order 
transition moment between the reference state 10) and the final state I f ) .  It may be 
expressed in terms of the two solution v e c t o r s  Na(o3f - o31 ) and Nb(o31) and the 
eigenvector Xy (E t21 - co ~ S tzl) X y  = 0). 

~ ( O I A I j ) ( j I ( B  -- (01B[0)) l f )  ( O I B I j ) ( j ] ( A  - (01Al0)) [ f )  ; 
- -  ( (--O)--j --~-"~? ~ ~015 "t- (O3j - -  O31 ) ) 

= -- N~(o3y - (91)B~21Xxy - N~(  - ( o l ) ( A ~  1 + A[z l )X t f  

+ N (o3z - + _ o31S  , - o3 ~jt,, ¢~,jt,~j~* ,,t -- COl)Xl¢, (53) 

If operators A, B, and C refer to components of the dipole operator, the quadratic 
response function in Eq. (51) gives the first hyperpolarizability. Its single residue 
gives the two-photon transition matrix element, and its double residues the 
transition matrix elements between the excited states (g land l f ) .  Two-photon 
absorption spectra have been obtained with this formalism in several computational 
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studies, for small molecules [96], for aromatic [97, 98] and aliphatic [84] com- 
pounds. These studies include also the role of vibronic contributions to the induced 
two-photon spectrum, which in general are found to be quite important. 

As shown in Section 3.5 one-photon spectra and other linear properties of 
polyenes have been well characterized through propagator calculations. Much 
of the theoretical efforts focus now on non-linear properties of these systems. The 
non-linear optical responses, the mechanism of the optical linearity and non- 
linearity, the length dependence of hyperpotarizabilities and multi-photon spectra 
in oligomer sequences have constituted few of several items of interest. For 
polyenes, the two-photon absorption of even states and their positions with respect 
to the band gap is of particular interest, since it is the key point for understanding 
optical non-linearity of polyacetylene. 

Two-photon spectra of the short polyenes were investigated by the quadratic 
RPA method in Ref. [84]. Two-photon absorption maxima for the even states of 
transbutadiene, trans-hexatriene and trans-ocatetraene were located at 1.5-1.7 
times the band gap energy (Eg). The first one-photon forbidden lag state was found 
to have a very small two-photon amplitude, and is therefore likely not to contribute 
significantly to the non-linear properties of the polyenes, although it might intrude 
the one-photon band-gap. The mechanism of optical non-linearity in the short 
conjugated polyenes was explored in relation to the so-called three- and four-state 
models. 

As mentioned in the previous paragraph much of the interest in the optical 
properties of the polyenes focus on the location of the one-photon allowed, 1 tB u 
state, and on the dipole forbidden, but two-photon allowed, 2 tAg state. The odd 
states (tBu) and even states (lAg) are antisymmetric and symmetric with respect to 
the mirror plane passing through the center of the chain, respectively. The 1 aBu 
state is thought to define the band gap at least for the shorter polyene members, 
however, whether this is the case for the longer ones is still an open question 
because the assessment of the 2 ~Ag state has been somewhat ambiguous both from 
experimental and theoretical points of view. It is thus still uncertain for which 
compounds this state intrude into the band gap. For example multiphoton experi- 
ments [99, 100] assign the first tAg peak in gas-phase hexatriene to 6.2 eV while 
two-photon experiments on liquid phase hextriene assigns it to 5.2 eV. The position 
of the 2 tag state has been shown sensitive to solvent effects, to geometrical 
distortion and bond-order inversion. For many polyenes the out-of-plane deforma- 
tion of the $1 state increases its nonradiative internal conversion dramatically 
[1013. 

The indication now is that for longer polyenes the 2 ~Ag state is the lowest 
excited state, and octatetraene seems to constitute an inflexion point in this context. 
Very recent studies on gas-phase trans-trans octatetraene favour a low 2 ~Ag state 
assignment; fluorescence spectroscopy [102], experiments using free jet expansions 
[1033, as well as large scale the multi-configurational perturbation theory calcu- 
lations [1043. RPA response theory calculations give very good experimental 
agreement for the 1Bu state but fails to find a lag state below l~Bu state for 
octatetraene. Beside this state, results agree with state-specific calculations [1043 
(CASPT2) on the excitation energies of the ~Ag states, and give a two-photon peak 
maximum around 8 eV. The role of geometric relaxation [1053 will also have 
a bearing on the location on the first excited lAg state. As in the case for some ring 
systems [983 the RPA two-photon amplitude for the first excited ~A~ state is quite 
small and therefore not important for the non-linear behaviour of polyenes as 
previously expected, while the higher lying tAg states with large two-photon 
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intensity are more important. Calculations on hyperpolarizabilities illuminate this 
point [8411 

The common features of two-photon transitions in the polyenes are also 
discussed in Ref. [84] based on response theory results. Calculations of the 
two-photon absorption (TPA) intensity, fir, assuming two linearly polarized light 
beams with parallel polarization vectors were carried out. This intensity is ex- 
pressed as [97, 98]) 

2 67 = (Sx~ + Sy, + SZz) 2 + 2($2x + SrZy + S~ + 2S~y), (54) 

where Sij denotes single residues of the quadratic response functions for dipole 
operators i and j. Results indicate a quite strong basis set dependency, however, 
some common features for all the short polyenes could anyway be extracted. The 
number of states is not the same for the different basis sets, while the positions of 
the maxima Stayed very close. 

The TPA maximum for the butadiene (BD) molecule is obtained at about 
1.5 Eg, where E, is the excitation energy of the first odd state (ltBu), i.e. 
the optical gap. A diffuse structure near 7.4 eV for hexatriene (HT) assigned as 
a tag ,-- lag transition [106, 107], and a relatively strong TPA at 6.24 eV appearing 
in gas phase multiphoton spectra of BD[100], are confirmed by the RPA calcu- 
lations. The TPA maximum is located around 8.1 eV or 1.6Eg for HT, while for the 
octatetraene (OT) molecule it is located at 7.82 eV or approximately at 1.7 Eg. Thus 
the BD, HT and OT molecules show, irrespective of basis sets, the common feature 
of a band maximum around 1.5-1.7 eg, From the RPA calculations [-84] a second 
strong TPA located around 1.2-1.4 Eg could be derived for the BD, HT and OT 
molecules. 

The two-photon spectra, the transition moments between excited states and the 
hyperpolarizabilities are all interconnected, and can all be derived from the re- 
sponse functions. Thus the transition moments between excited states can be used 
to construct few-state models for the hyperpolarizability. These models have been 
used semi-empirically to investigate the mechanisms behind optical non-linearity 
[108M 10] in conjugated polymers. Ab initio methods have so far only attempted 
to reproduce experimental hyperpolarizabilities [111-113], e.g. using coupled 
Hartree-Fock theory (equivalent to RPA). Karna et al. computed the frequency- 
dependent hyperpolarizabilities of the short polyenes [112, 111, 84]. In general it is 
found that the basis set and dispersion effects play the dominant roles in determin- 
ing the hyperpolarizabilities of polyenes, while correlation effects might be rather 
small [111]. From response theory methods and decomposition schemes it is thus 
also possible to explore the mechanism of non-linearity at a purely ab initio level, 
see Ref. [84]. 

From the sum-over-states expression for the response function (see Ref. [29]), it 
is fairly straightforward to derive the three- and four-state model expressions for 
the static hyperpolarizability [84]. These expressions involve transition moments 
and the energy difference between the few low-lying states. In polyenes the hyper- 
polarizability is dominated by the xxxx component along the chain, which is 
controlled by the transition route 1 lAg --~ alBu ---* b tAg ---, c 1Bu --+ 1 IAg where a, 
b and c denote state numbers. For instance, in the three-state approximation, only 
the 1 tAg, 1 tBu and m tAg states are considered [1083. When the transition moment 
between the odd (1Bu) state and the excited even state (rnAg) is larger than that 
between the ground state and the odd (1Bu) state, the hyperpolarizability is 
positive, otherwise it is negative. Response theory calculations presented in Ref. 
[84] indicate, however, that some of these conditions for the three and four-state 
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models are not well fulfilled for polyenes, and that many transitions must be 
accounted for to explain the large positive value for the xxxx component. Thus, 
although there is an even state which dominates the TPA spectrum, it cannot be 
used as a candidate to form three- or four-state approximations for determining the 
hyperpolarizability. This finding is in contrast to for instance charge transfer 
complexes [ 114], for which few state models represent the hyperpolarizability very 
well. 

3. 7 Singlet- tr iplet  spectra 

The role of triplet states in electronic spectroscopies has been little investigated in 
comparison with the role of the manifold of singlet states. This follows from the 
simple fact that transitions to many of the lowest singlet states are dipole allowed 
and therefore well characterized by absorption or fluorescence spectroscopy, and, 
on the theoretical side, from the comparatively simple handling of the dipole 
interaction for singlet states. This should be weighted against the non-linear nature 
of the interaction, with simultaneous spin-orbit and dipole coupling, that is 
involved in the absorption or emission of triplet states. 

From the generalization of linear and quadratic response theory to include 
triplet operators, and in particular the spin-orbit operator [115-117], it is now 
possible to characterize a whole range of properties of triplet states. The spin-orbit 
operator enters as one of the perturbing operators in quadratic response theory to 
describe singlet-triplet absorption or phosphorescence. The prospect for 
spin-orbit response and, in general, for excitations involving change of spin was 
greatly promoted by the formulation of determinant based CI techniques [115, 
118]. This simplified the construction of two-electron density matrices that contain 
triplet orbital excitation operators and two-electron density matrices which con- 
nect singlet and triplet states. 

In addition to one-photon singlet-triplet absorption spectra the interest has 
focussed on the phosphorescence effect, which has been analysed by response 
theory for a series of small molecules as well as for several aromatic compounds 
[93, 119, 120]. The information gained from such calculations concern polarization 
directions, vibronic activity, oscillator strengths, radiative lifetimes and excitation 
energies. These quantities either refer to values averaged over the triplet states or to 
the specific triplet state spin sublevels. Modern low-temperature matrix isolation 
techniques allow comparison with experimentally determined spin-sublevel life- 
times. At very low temperatures the spin lattice relaxation processes are slower 
than the phosphorescence decay time which means that characterization of the 
individual spin sublevels can be performed in terms of decay constants and 
polarization directions. 

The phosphorescence lifetime is determined from the rate of the spin-forbidden 
dipole transition between two electronic states of different multiplicity. For a sys- 
tem with a singlet ground state sO and a first excited triplet state T1, the lifetime 
associated with the kth triplet component T ] is (in atomic units) 

1 4C~030~ 3 
~ 3 2 I(Sorx~rr~)l 2 (55) 

l 

where ~ol = E (T1)  -- E(So)  is the frequency of the transition, e is the fine-structure 
constant and x ~ is the/th component of the dipole operator. The total radiative 
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lifetime (in the high-temperature limit) ~ is obtained as 3/~ = Y,k 1/Zk. The transition 
matrix element is determined from first-order perturbation theory as 

< S o [ x Z l T ] ) = ~  <S°[x'lSs><x~lgks°Lr]> ~ < S o l H k s o l T ~ ) < Z ~ l x t l T ] )  
s E(T1) -- E(S~) + , E(So) -- E(Tt )  

(56) 

where H~o is the kth component of the spin-orbit operator. In the language of 
propagators or response functions this matrix element is associated with the residue 
of a quadratic response function; 

lim (co t. ~ = -- o~ l ) ( ( x  ,Hso ,  C))o,,o - N~(o&)H~s~j, Xzr 
¢ o  ---~ c o l 

. [ 2 ] X ' V  r [3]  L " [ 3 ]  __ (.O ¢ ' [ 3 ]  "~ lkTSOx,/" -- NS°(r~ 21 + "o 1~t f  + N j(cof)(Ejmt + r,j,m fOjlm)~'m a~f,  

(57) 

where C is an arbitrary triplet operator and an Einstein summation convention is 
used. This equation is similar to the one given for two-photon transitions in the 
previous section; the phosphorescence case involves dipole and spin-orbit linear 
response vectors N'(cOs) and N s° that are obtained by solving the two linear 
response equations 

N~((oj .) = (E tEl - cosS[2]-' rtl~'] *, (58) 

NSO = ~tEt21~J - 1H[llso (59) 

and the triplet excitation vectors (Xy) and frequencies (coy) are obtained from the 
solution of the MCSCF triplet excitation eigenvalue equation. Thus, with response 
theory the singlet-triplet transition matrix element is acquired directly from the 
residues of response functions, by iterative solutions of the response equations of 
large dimensions. 

Polyenes lack in general observable emission from their triplet T1 states. Being 
of rt o n* nature there is no strong spin-orbit coupling to the dipole intensive 
singlet r t o  rt* states through which an observable phophorescence can occur. The 
T1 state receives most intensity through interaction with the dipole-weak and 
high-lying a ---, 7t* states. Calculations of singlet-triplet absorption and triplet state 
phosphorescence spectra of the short polyenes were recently carried out in 
Ref. [105]. Because triplet response calculations can be subject to instabilities at 
the RPA level (with a Hartree-Fock reference state), as it indeed is for ethylene, 
singlet-triplet response calculations are mostly carried out with correlated (multi- 
configurational-) reference states. In contrast to the common case of fluorescence, 
involving singlets which are comparatively short-lived and therefore well charac- 
terized by calculations assuming the vertical approximation, the long-lived triplet 
states often require calculations at both the vertical and the adiabatic points. 
Geometry optimizations of the T1 states should be performed, since this will be 
important not only for the electronic radiative lifetime, but also for the vibronic 
contributions and the role of alternative (non-radiative) decay channels to the 
triplet state. 

As in the case of the polyene singlet spectra, the first B, state of butadiene seems 
to have been a key issue in theoretical studies of polyenes considering also the 
manifold of triplet states. It has previously been claimed [121] that the lack of 
experimental observation of the iAg-SBu transition is due to the presence of a lower 
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3Ag state with forbidden phosphorescence but which quenches the dipole intensity 
from the 3B u state. However, calculations in Ref. [105] clearly show that at 
optimum geometry the 3Bo state is the lowest triplet state and that the lack of 
observation simply is due to very weak phosphorescence. The radiative lifetime was 
predicted to 24s for the singlet optimized geometry and as long as 327s for the 
triplet optimized geometry. The response results for the other short polyenes are 
also of this magnitude, which might explain the lack of observation. However, the 
geometric distortions, all T1 states are found eclipsed and pyramidalized, and the 
vibronic contributions are important factors that must be accounted for in addi- 
tion to the non-radiative quenching of this emission. 

Linear spin-orbit response theory 1-1163 can also be used to explore the 
probabilities of non-adiabatic singlet-triplet transitions, the so-called intersystem 
crossings. Such calculations were carried out in Ref. [-105] for the polyene series. As 
pointed out by Mulliken [122] already 60 years ago, acyclic alkenes, unless 
extensively conjugated, are expected to show energy maxima in the ground singlet 
state and minima in the first excited triplet state at a perpendicularly twisted 
geometry. Thus ethylene in the T1 state is expected to belong to the D2a group. 
Since at this geometry the energy gap between the So and T1 states is quite narrow 
it has generally been assumed that it represents the geometry at which TI-So 
nonradiative transition or intersystem crossing (ISC) occurs 1-123, 124]. In spite of 
the small energy gap the rate of So ~ T~ ISC could be inefficient, because the 
spin-orbit coupling (SOC) matrix element between the two states is equal to zero at 
the D2e symmetry. In Ref. [105] geometry optimization of the ethylene T~ state was 
performed showing that the two CH2 groups are pyramidalized up to the angle 9 °. 
At this angle the SOC matrix element is equal to 0.03 cm- 1 and therefore still too 
small. It was suggested that the S -T  crossing could occur in the region of 7 - 85 °, 
where 7 is a twist dihedral angle between the HCH planes; at this geometry the 
SOC matrix element is of the order of 0.2 cm -1 [124]. This is sufficient for the 
effective quenching of the T1 state (the crossing point is passed many times during 
vibrations of the twisted T~ ethylene), but too small for the So ~ T1 ISC transition 
during thermal isomerization. 

4. Concluding remarks 

In the present work we have discussed various molecular electron spectroscopies 
under the unifying aspects of contemporary propagator theory. The finite polyenes 
and polyacetylene have been employed as common test samples for this purpose. 
The usefulness of the propagator methods is obvious from their applications which 
now cover a representative cross section of chemically and physically interesting 
problems. Although the diversification of these methods already has been driven 
quite far, one can forsee development in several aspects; of the basic methodology 
as well as of a widening of the scope of systems and phenomena that can be 
investigated. It is our hope that the present review has provided ideas on some 
propagator oriented problems that will be worked on in the field of molecular 
electron spectroscopy. 
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